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1 Introduction

The presence of long-range dependence in broadband network traffic as well as

that of self-similar traffic patterns in modern high-speed network traffic lead

naturally to the question of finding adequate traffic models for these situations.

One simple physical explanation for this kind of phenomenon consists on the

superposition of many ON/OFF sources with strictly alternating ON- and

OFF-periods and whose ON- or OFF-periods lengths have high variability

(that is, exhibit the Noah Effect), as can be seen in [7]. There it is proved

that in that scenario aggregate network traffic can be self-similar or long-

range dependent (exhibits the Joseph Effect): in Theorem 1 of [7] the authors

prove that the superposition of N ON/OFF sources generates an aggregate

cumulative arrival process that conveniently scaled in time by a factor r and

in state space, converges in some sense, as N goes to infinity and after that,

as r goes to infinity, to a fractional Brownian motion (fBm) (these limits

should be treated with care, because if they are taken in the reverse order,

the convergence is to an α−stable Lévy process rather than a fBm). What

is more, they relate the parameter that describes the intensity of the Noah

Effect (that means, the heaviness of the tail of the distribution of lengths) of

the ON- and/or OFF-periods, with the Hurst parameter of the fBm, that is a

measure of its degree of self-similarity (or Joseph Effect).

By considering the question of predicting the performance experienced by a

superposition of heavy-tailed ON/OFF sources multiplexed at a buffered re-

source, in Debicki and Mandjes ([3]) is considered the following question: does

the convergence of the aggregate cumulative arrival process to the fBm given

by Theorem 1 of [7] carry over to the stationary buffer content process? They
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give a positive answer to it in a heavy-traffic environment, by showing that

the scaled workload process converges to the fBm, reflected appropriately to

be non-negative, for fluid models with only one station. One may ask whether

this remains true in a multi-station environment, for a fluid model with feed-

back, that is the scenario considered in our paper. That is the question that

motivates this paper.

To be more specific, we consider non-deterministic fluid models with entries

like in the model of Debicki and Mandjes but with a structure similar to

that introduced by Harrison in [5] as the deterministic fluid analog of multi-

class queueing networks with feedback. We assume that our system has J

stations with a single server and an infinite buffer at each one, feedback and

FIFO (first-in-first-out) discipline. We suppose (and this gives the difference

with the model considered by Harrison) that the process of external arrivals

is a non-deterministic aggregated cumulative process generated by a large

enough number of heavy tailed ON/OFF sources. We prove in Theorem 1

that after adequate scaling, the immediate workload process converges to a

J−dimensional reflected fractional Brownian motion process, that is, we ex-

tend the result in [3] to our more general setting. A key ingredient in the proof

is the invariant principle given by Williams in [8] for the reflected Brownian

motion process, that can also be applied to the reflected fractional Brownian

motion process.

We also prove a Functional Weak Law of Large Numbers (FWLLN) (see Theo-

rem 2) for two processes defined as the total amount of fluid arriving to the sta-

tions (including both feedback flow and external input), and the total amount

of leaving fluid from the stations (to other stations or outside the system), up

to any time. This result justifies the interpretation of parameter λ introduced
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in (6) (the solution of the limiting traffic equation) as the long run fluid rate

into and out of stations.

The paper is organized as follows. In Section 2 we set up notation, definitions

and some terminology. The fluid model considered in our work is introduced

in Section 3.1; associated performance processes are considered in Section

3.2, where it is proved a result that establishes a useful relationship between

them (Lemma 1). In Section 3.3 we introduce scaled processes, and Section 4

presents the main result, Theorem 1, that establishes the convergence, under

heavy traffic, of the scaled workload process to a rfBm in some sense. Finally,

Section 5 is devoted to the Functional Weak Law of Large Numbers (FWLLN),

given by Theorem 2.

2 Preliminaries, notations and definitions

We will denote by Id the d−dimensional identity matrix. Vectors will be co-

lumn vectors unless indicated otherwise and vT means the transpose of a

vector (or a matrix) v. Given v = (v1, . . . , vd)
T ∈ Rd, hereafter we will denote

by diag(v) the d× d diagonal matrix with diagonal elements v1, . . . , vd . For a

d× d′ matrix A = (aij)i=1,...,d, j=1,...,d′ , let |A| = max
1≤i≤d

( d′∑

j=1

|aij|
)
.

Let Cd be the space of continuous functions ω : [0, ∞) → Rd, with the topology

of the uniform convergence on compact time intervals. For any T ≥ 0 and

ω ∈ Cd, we define

||ω(·)||T def
= sup

t∈[0,T ]
|ω(t)| = sup

t∈[0,T ]

(
max
1≤`≤d

|ω`(t)|
)

.

We will say that ωr → ω as r → ∞ in Cd (uniformly on compacts) if for any
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T ≥ 0, ||ωr(·)− ω(·)||T → 0 , and we will denote it by lim
r→∞ωr = ω .

We will use the following notations for diferent types of convergence:

D − lim for the convergence in distribution on Cd, P− lim for the convergence

in probability (uniformly on compacts), and ˜lim for the convergence of the

finite-dimensional distributions (in law). The convergence in probability is

the following sense: we say that a family {Xr}r of random elements on Cd

converges in probability to the random element X if for any T > 0 and for

any ε > 0,

lim
r→∞P

(
||Xr(·)−X(·)||T ≥ ε

)
= 0 .

If X is a constant-valued random element (that is, an element of Cd), the

convergence in probability is equivalent to the convergence in the distribution

sense.

Fractional Brownian motion (fBm for short), that is a stochastic process de-

pending on a parameter H ∈ (0, 1), was first introduced in a celebrated paper

by Mandelbrot and Van Ness ([6]) (case H = 1/2 corresponds to the Brownian

motion process). Two fundamental properties justify the general interest on it

from the modelling point of view: fBm is a self-similar process and it has long-

range dependent increments, that are positively correlated if 1/2 < H < 1

(the most frequently encountered in modelling). For the sake of completeness

we give here its definition in the multidimensional case:

Definition 1.(fBm) A stochastic process BH = {BH(t) = (BH
1 (t), . . . , BH

J (t)),

t ≥ 0}, defined on some probability space, is called a J-dimensional fBm of

(Hurst) parameter H ∈ (0, 1), starting from x ∈ RJ , with drift vector θ ∈ RJ

and with associated matrix Γ, if it is a continuous Gaussian process starting
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from x, with E
(
BH(t)

)
= x + θ t for any t ≥ 0, and with covariance function

given by

Cov
(
BH(t), BH(s)

)
= E

((
BH(t)−(x+θ t)

)(
BH(s)−(x+θ s)

)T
)

= ΓH(s, t) Γ,

for any t, s ≥ 0 , where Γ is a J × J positive semi-definite matrix and

ΓH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
.

For short, we will say that BH is a J−dimensional fBm with associated data

(x, H, θ, Γ).

Now we introduce a process that, loosely speaking, behaves like a fBm starting

and being forced to live in the positive orthant S = RJ
+. It is called reflected

fractional Brownian motion (rfBm for short). Although it can be found in the

literature, at least in the one-dimensional case (see [3] for instance), we have

not found its general definition in the multi-dimensional case and this is the

reason why we give it here and treat the question of its existence.

Definition 2. (rfBm) A reflected fractional Brownian motion on S = RJ
+

associated with data (x, H, θ, Γ, R), where x, θ ∈ S, H ∈ (0, 1) and Γ and R

are J×J matrices, being Γ a positive definite one, is a J−dimensional process

W = {W (t) = (W1(t), . . . , WJ(t)), t ≥ 0}, defined on some probability space,

say (Ω, F , P ), such that

(i) W has continuous paths and W (t) ∈ S = RJ
+ for all t ≥ 0 a.s.,

(ii) W = X + R Y a.s., with X and Y two J−dimensional processes defined

on (Ω, F , P ), verifying:

(iii) X is a fBm with associated data (x, H, θ, Γ),
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(iv) Y has continuous and non-decreasing paths, and for each j = 1, . . . , J ,

a.s., Yj(0) = 0 and
∞∫
0

1{Wj(s)>0} dYj(s) = 0 (that means, Yj can only increase

when W is on face Fj = {y ∈ S = RJ
+ : yj = 0}).

We also say that the pair (W,Y ) is a R−regularization of X, that (W,Y ) is a

solution of the R−regularization problem of X or that it is a solution of the

multidimensional Skorokhod problem associated to X.

To get an idea, rfBm starts in the interior of S and behaves like a fBm until

it touches the boundary of S, formed by faces Fj. Therefore, it is instanta-

neously “reflected”, by avoiding the exit of S. For each j, the jth column of

the reflection matrix R gives the direction of the reflection on face Fj, and

component Yj of process Y gives its intensity. Figure 1 shows the connection

between the reflection angles on the edges and the reflection matrix R, for the

case J = 2.

R
2

F1

F2

v1

v2

0

S = R
2
+

R = (v1,v2)

Fig. 1.

Remark 1. In the one-dimensional case, the existence of such a process is

assured by [4] (see Theorem I.1.2 there) if R > 0. For the J−dimensional case,

given a general process X on (Ω, F , P ), starting from x and with continuous
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paths, and given a J × J matrix R, in order to ensure the existence of a

pair (W,Y ) verifying (i), (ii) and (iv) we will impose that matrix R be a

Completely-S matrix. Theorem 2 of [1] shows that the completely-S property

of matrix R is sufficient (and in some cases also necessary) for the existence

of the R−regularization of X, although in the subsequent remark it is pointed

out that if X is adapted to some filtration, the authors can not prove that

process Y be also adapted to it. Nevertheless, Proposition 4.2 of [8] shows

that under a stronger assumption on R, that we will denote by (HR), this

problem overcomes.

(HR) Assumption on matrix R:

R can be expressed as IJ + Θ, with Θ a J × J matrix such

that |Θ|, that is the matrix obtained from Θ by replacing all the (1)

entries in Θ by their absolute values, has spectral radius less than 1 .

Specifically, in proof of Proposition 4.2 of [8] it is shown that (HR) (condi-

tion (II) there) ensures the existence of a continuous (path-to-path) mapping

π from the space of continuous J−dimensional paths x(·) starting in S into

the space CJ × CJ of continuous paths (w, y)(·) living in RJ × RJ , such that

for each x(·), (w, y)(·) = π(x(·)) satisfies conditions (i), (ii) and (iv) of Defini-

tion 2 with (w, x, y)(·) instead of (W,X, Y )(·) and the a.s. omitted. For each

x(·), (w, y)(·) = π(x(·)) is the unique pair in CJ × CJ with these properties,

and the values of (w, y)(·) = π(x(·)) on [0, t] depend only on the values of

x(·) on [0, t], for each t ≥ 0. Then, as (W,Y ) = π(X) a.s., we have that if

X is adapted to some filtration {Ft, t ≥ 0}, therefore (W,Y ) is adapted to

filtration {Gt, t ≥ 0}, with Gt = Ft ∨ N , where N denotes the collection of

P−null sets in F (due to the “a.s”), and (HR) is a sufficient condition for

8



strong pathwise uniqueness of the solution of the R−regularization problem

of X.

3 The fluid model

3.1 Introducing the model

We consider a network composed by J stations with a single server that pro-

cesses continuous fluid, and an infinite buffer, at each one.

By following the ideas of [7] for a single station, first of all suppose that for

any station j, there is only one external source sending fluid to it, and that

the source can be ON or OFF. This source generates a stationary binary time

series {Uj(t), t ≥ 0} where Uj(t) = 1 means that at time t the source is ON

(and it is sending fluid to station j, at a traffic rate say αj > 0), and Uj(t) = 0

means that it is OFF. We supose that, independently of j, the lengths of the

ON-periods are i.i.d., those of the OFF-periods are i.i.d., and the lengths of

ON- and OFF-periods are independent. The ON- and OFF-periods lengths

may have different distributions.

Let f1 and f2 be the probability density functions corresponding to the lengths

of ON and OFF-periods, respectively, that are non-negatives and heavy-tailed.

Therefore, their expected values and variances (all of them positive) are

µ̃i =
∫ ∞

0
u fi(u) du and σ2

i =
∫ ∞

0
(u− µ̃i)

2 fi(u) du , i = 1, 2 .

Assume that as x →∞ we have

∫ ∞

x
f1(u) du ∼ x−β1 L1(x) and

∫ ∞

x
f2(u) du ∼ x−β2 L2(x) ,
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with 1 < β1, β2 < 2 and L1, L2 positive slowly varying functions at infinity.

Note that µ̃1 and µ̃2 are always finite but variances σ2
1 and σ2

2 are infinite.

Suppose now that for each station j there are N i.i.d. sources, each one with

its own binary time series {U (n)
j (t), t ≥ 0}, n = 1, . . . , N , on a common

probability space (Ω, F , P), and that they are all independent. If all sources

where ON, fluid would arrive at station j at deterministic rate αN
j > 0 (that we

assume depending on N), and the cumulative external fluid traffic up to time

t would be deterministic and equal to αN
j t (this is the case for the fluid model

introduced by Harrison in [5]). Instead, we define the cumulative external fluid

arrived up to time t (by the N sources) at station j in this way:

EN
j (t)

def
= αN

j

∫ t

0

1

N

( N∑

n=1

U
(n)
j (u)

)
du (2)

The J−dimensional (non-deterministic) aggregated cumulative external fluid

traffic process, defined on (Ω, F , P), is EN = {EN(t) =
(
EN

1 (t), . . . , EN
J (t)

)T

t ≥ 0}, where the component processes are all independent. We suppose, for

the sake of simplicity, that at time t = 0 there is no accumulated fluid at the

network (that is, EN(0) = 0). Let αN = (αN
1 , . . . , αN

J )T .

Although other disciplines are possible, we assume that fluid at each server is

processed in a first-in-first-out (FIFO) basis. When fluid arrives at station j

and the server is busy, it must wait for service at its buffer, that we suppose

without restriction of capacity. We consider that our service discipline is a

non-idling (or work-conserving) policy, that means that a server is never idle

when there are fluid waiting to be processed at its station.

Suppose that server at station j (server j for short) processes fluid at a con-

stant rate µj > 0 (independent of N) if that station were never idle. Let
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mj = 1/µj be the mean service rate for station j, m = (m1, . . . , mJ)T , µ =

(µ1, . . . , µJ)T and M = diag(m) .

Let Pj` be the proportion of fluid that leaving station j goes next to station

`. We assume that for each j,
J∑

`=1

Pj` ≤ 1 and 1−
J∑

`=1

Pj` ≥ 0 is the proportion

of fluid that leaving station j goes outside the network. Thus, P = (Pj`)
J
j,`=1

is a sub-stochastic matrix. It is called the “flow” or “routing” matrix of the

network, and it is assumed to have spectral radius less than one. Hence, Q
def
=

(
IJ−P T

)−1
is well defined. Figure 2 shows the flow into and out of the system,

and between stations (feedback) for the particular case J = 3.

Station 1 Station 2 Station 3

P11

P22

P33P21

P12

P13

P31

P32

P23

1− (P11 + P12 + P13) 1− (P21 + P22 + P23) 1− (P31 + P32 + P33)

Fig. 2.

We define λN to be the unique J−dimensional vector solution to the traffic

equation

λN def
= αN µ̃1

µ̃1 + µ̃2

+ P T λN (that is λN = QαN µ̃1

µ̃1 + µ̃2

) . (3)

We note that for any j, λN
j can be interpreted as the long run fluid rate

into and out of station j. The technical justification for that can be seen in
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Theorem 2, Section 5.

We also define the fluid traffic intensity for station j as

ρN
j

def
= mj λN

j

(
in matricial form, ρN = M λN

)
.

The main result of this work will be proved under a heavy traffic condition,

that establishes that the total load imposed on each service station tends to

be equal to its capacity, that is, its traffic intensity tends to be equal to 1, in

the following sense:

(HT) lim
N→∞

√
N (ρN − e) = 0 where e = 1 ∈ RJ . (4)

Note that under the previous condition we deduce the existence of

lim
N→∞

αN = α , with α =
µ̃1 + µ̃2

µ̃1

Q−1 M−1 e (> 0) (5)

that is the limiting value for the external arrival rate needed to achieve the

maximum capacity of the system. We can also deduce, from the definition of

λN , the existence of

lim
N→∞

λN = λ with λ = M−1 e . (6)

3.2 Performance processes

Two descriptive (J−dimensional) processes will be used to measure the per-

formance of the queueing network:

The immediate workload process WN , defined by: WN
j (t) denotes the amount

of time required for server j to complete processing of all fluids in queue (or

being served) at station j at time t. We assume that WN(0) = 0 .
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The cumulative idle-time process Y N , defined by: Y N
j (t) is the cumulative

amount of time that server j has been idle in the time interval [0, t], that is,

Y N
j (t)

def
=

∫ t

0
1{W N

j (s)=0} ds . (7)

Immediate workload process measures the congestion and delay in the network,

while idle-time process measures utilization of resources.

Apart from them, there are other interesting (J−dimensional) processes to be

considered in the fluid model, as processes AN and DN , that will appear in the

proof of Lemma 1, and that are also interesting by themselves. In Section 5 we

will obtain a Functional Weak Law of Large Numbers for them. Definition is

as follows: AN
j (t) is the total fluid arriving to station j up to time t, including

both feedback flow and external input, and DN
j (t) is the total amount of

fluid departing station j (both being routing to other station or leaving the

network), up to time t . We assume AN(0) = DN(0) = 0.

Our objective now is to show how aggregated cumulative external fluid traf-

fic, workload and cumulative idle-time processes are related by means of the

following result.

Lemma 1. We have that

WN(t) = R M Q EN(t)−R e t + R Y N(t) , (8)

where

R
def
= (IJ + M Q P T M−1)−1 . (9)

Note that matrix R is well defined because IJ +M QP T M−1 = M Q M−1 has
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inverse, that is M Q−1 M−1 = M (IJ − P T ) M−1, and therefore

R = IJ −M P T M−1 . (10)

Moreover, R verifies condition (HR): by (10) we have that R = IJ + Θ with

Θ = −M P T M−1, and |Θ| has the same spectral radius as P , that is assumed

to be less than 1.

Proof of Lemma 1:

First of all note that

WN(t) = M AN(t)− e t + Y N(t) . (11)

Expression (11) is justified by the definition of WN
j (t) as the amount of time

required for server at station j to complete processing of all fluid buffered or

being served at that station at time t, that equals to M AN
j (t), the cumulative

total amount of time required for server at station j to complete processing of

fluid arrived to that station up to time t, minus the amount of time, t−Y N
j (t),

that that server has been busy (working) up to time t.

We can write

AN(t) = EN(t) + FN(t)

where FN
` (t) =

J∑

j=1

Pj` DN
j (t) is the total amount of fluid that arrives from

feedback to station ` (due to the fraction of the amount DN
j (t) of fluid that

leaving station j is next routed to station `, summed over the totality of

stations). That is,

AN(t) = EN(t) + P T DN(t) . (12)
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It is immediate to realize that

DN(t) = AN(t)−M−1 WN(t) , (13)

that is, the total amount of fluid leaving station j up to time t is the total

amount of fluid arriving station j up to time t minus the fluid in queue or

being processed at that station at time t, that is µj WN
j (t), by definition of

the workload process. By substituting this expression into (12) we have

AN(t) = EN(t) + P T (AN(t)−M−1 WN(t)) ,

and taking into account the definition of matrix Q,

AN(t) = Q (EN(t)− P T M−1 WN(t)) ,

that replaced into (11) gives

WN(t) = M Q EN(t)−M Q P T M−1 WN(t)− e t + Y N(t) ,

and then obtain (8) just by using the definition of matrix R given by (9) . ¤

3.3 Scaled processes

In order to define the scaled processes (in space, by a factor
√

N and in time by

a factor r) associated to the fluid model, we must introduce previously some

notation used in [7]. For any j = 1, 2, set aj = Γ(2−βj)

(βj−1)
. The normalization

factors used below depend on whether b, defined by b
def
= limt→∞ tβ2−β1 L1(t)

L2(t)
,

is finite, zero, or infinite. If 0 < b < ∞ (implying β1 = β2 and b = lim
t→∞

L1(t)

L2(t)
),

set βmin = β1 = β2, L = L2 and

σ2
lim

def
=

2
(
µ̃2

2 a1 b + µ̃2
1 a2

)

(
µ̃1 + µ̃2

)3
Γ(4− βmin)
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(factor σ2
lim does not appear in scaling, but will play an important role in the

sequel). If, on the other hand, b = 0 or b = ∞, set L = Lmin and

σ2
lim

def
=

2 µ̃2
max amin(

µ̃1 + µ̃2

)3
Γ(4− βmin)

where min is the index 1 if b = ∞ and 2 if b = 0; max denoting the other

index.

In either case, βmin ∈ (1, 2). Let we define H
def
= 3−βmin

2
. Therefore, H ∈

(1
2
, 1) .

Now we can introduce the scaled processes associated to the fluid model. We

will use a hat to denote them:

Ŵ r,N(t)
def
=
√

N
WN(r t)

rH L1/2(r)
(14)

Êr,N(t)
def
=
√

N
EN(r t)− αN r t µ̃1

µ̃1+µ̃2

rH L1/2(r)
(15)

Ŷ r,N(t)
def
=
√

N
Y N(r t)

rH L1/2(r)
, (16)

and we can see that they are related by means of

Ŵ r,N(t) = X̂r,N(t) + R Ŷ r,N(t) , (17)

with

X̂r,N(t) = R M Q Êr,N(t) +

√
N

rH L1/2(r)
R (ρN − e) r t . (18)

Proof of formula (17):

By definition (see (14)) and (8), we can write

Ŵ r,N(t) =

√
N

rH L1/2(r)

(
R M Q EN(r t)−R e r t + R Y N(r t)

)
,
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that can be expressed as the sum of the following three factors:

√
N

rH L1/2(r)
R M Q

(
EN(r t)− αN r t

µ̃1

µ̃1 + µ̃2

)
= R M Q Êr,N(t) ,

√
N

rH L1/2(r)
R

(
M QαN r t

µ̃1

µ̃1 + µ̃2

− e r t
)

=

√
N

rH L1/2(r)
R (ρN − e) r t ,

and R Ŷ r,N(t) . ¤

Remark 2. Note that processes appearing in expression (17) verify: Ŵ r,N has

continuous paths; for any t ≥ 0 , a.s. Ŵ r,N(t) ∈ S = RJ
+ ; Ŷ r,N has continuous

and non-decreasing paths, and for each j , a.s. Ŷ r,N
j (0) = 0 and

∞∫

0

Ŵ r,N
j (s) dŶ r,N

j (s) = 0
(
equivalently,

∫ ∞

0
1{Ŵ r,N

j (s)>0} dŶ r,N
j (s) = 0

)
.

4 The main result

Our goal now is to prove that the scaled workload process, Ŵ r,N , converges to

a rfBm in some sense, as N and r increase. This is established in the following

result:

Theorem 1.

Under heavy traffic (condition (HT)), we have that there exist the limits

ˆ̂
W r = ˜lim

N→∞
Ŵ r,N and W = D− lim

r→∞
ˆ̂
W r ,

and that W is a drift-less rfBm on S = RJ
+ with associated data

(x = 0, H =
3− βmin

2
, θ = 0, Γ, R) ,

where Γ = σ2
lim R M Q diag(α)2 QT M RT , with α given by (5), and R the

matrix introduced in Lemma 1.
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Proof of Theorem 1.

Let us first note that Êr,N
j (t), defined by (15) and (2), can be written in the

following way:

Êr,N
j (t) = αN

j

r t∫
0

ϕN
j (u) du

rH L1/2(r)
, where ϕN

j (u)
def
=

1

N1/2

N∑

n=1

(
U

(n)
j (u)− µ̃1

µ̃1 + µ̃2

)
.

The convergence of Êr,N to a process BH , that is J−dimensional drift-less

fractional Brownian motion with associated data ( x = 0, H = 3−βmin

2
, θ =

0, Γ = σ2
lim diag(α)2 ) , is proved as in Taqqu et al. ([7]). This convergence is

in the sense that there exist the limit

ˆ̂
Er = ˜lim

N→∞
Êr,N = αT

r ·∫
0

G(u) du

rH L1/2(r)
, (19)

with {G(t), t ≥ 0} some J−dimensional drift-less gaussian and stationary

process, and that

D− lim
r→∞

ˆ̂
Er = BH .

Combining (18), heavy traffic condition (HT), and the continuous mapping

theorem (see Corollary 1 of Theorem 5.10 in [2]), we can assert that there

exists
ˆ̂
Xr = ˜lim

N→∞
X̂r,N , with

ˆ̂
Xr = R M Q

ˆ̂
Er (20)

and that there also exists D− lim
r→∞

ˆ̂
Xr = X , with X = R M QBH , that is a

J−dimensional fBm with associated data
(
x = 0, H = 3−βmin

2
, θ = 0, Γ

)
, Γ

being the matrix given by

Γ = σ2
lim R M Q diag(α)2 QT M RT .

We proceed now to show the corresponding convergence for processes Ŵ r,N

18



and Ŷ r,N , by taking into account that matrix R verifies condition (HR), as is

pointed out in Lemma 1.(20) makes it obvious that
ˆ̂
Xr has continuous paths,

because
ˆ̂
Er does (which is clear from (19)). Comments made on last paragraph

of Remark 1 show that, in this situation, there exists a unique strong pathwise

solution of the R−regularization problem of
ˆ̂
Xr, that coincides with

(
˜lim

N→∞
Ŵ r,N , ˜lim

N→∞
Ŷ r,N

)
, by (17) .

If we denote ˜lim
N→∞

Ŷ r,N by
ˆ̂
Y r and ˜lim

N→∞
Ŵ r,N by

ˆ̂
W r, we have that the unique

solution of the R−regularization problem of
ˆ̂
X is (

ˆ̂
W r,

ˆ̂
Y r) , and then

ˆ̂
W r =

ˆ̂
Xr + R

ˆ̂
Y r . (21)

This fact implies that
ˆ̂
W r,

ˆ̂
Xr and

ˆ̂
Y r verify hypotheses of the invariant

principle of Theorem 4.1 in [8], taking into account that D− lim
r→∞

ˆ̂
Xr = X,

and that R is a Completely-S matrix, because it verifies (HR). We have

that
{( ˆ̂

W r,
ˆ̂
Xr,

ˆ̂
Y r

)}
r

inherits tightness from sequence
{ ˆ̂
Xr

}
r

and conse-

quently, by assumption (HR) on R (see Corollary 4.3 of [8]), there exists

D− lim
r→∞

( ˆ̂
W r,

ˆ̂
Xr,

ˆ̂
Y r

)
= (W, X, Y ), where W = X + R Y and conditions of

Definition 2 are satisfied. Therefore, W is a rfBm on S = RJ
+ with associated

data (x = 0, H = 3−βmin

2
, θ = 0, Γ, R).

We mention that Theorem 4.1 in [8] gives the convergence in the distributional

sense on DJ , the space of functions from [0,∞) to RJ that are right continuous

and have finite left hand limits, with the Skorokhod topology. Our convergence

is taken in the distributional sense on CJ , and is implied by the convergence

on DJ because the Skorokhod topology relativized to CJ coincides with the

uniform topology over compacts. ¤
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5 Functional Weak Law of Large Numbers (FWLLN) for processes

AN and DN

In this section we will prove a Functional Weak Law of Large Numbers for

processes AN and DN introduced in Section 3.2, that are the total amount of

fluid arriving and departing stations up to any time, respectively. This result

gives support to the interpretation of λ, that is the solution of the limiting

traffic equation λ = Qα
µ̃1

µ̃1 + µ̃2

(as can be seen by combining (5) with (6)),

as the long run fluid rate into and out of the system.

Let us first introduce the associated scaled processes

Âr,N(t)
def
=
√

N
AN(r t)− λN r t

r
(22)

D̂r,N(t)
def
=
√

N
DN(r t)− λN r t

r
(23)

Theorem 2. (FWLLN for processes AN and DN)

Under heavy traffic (condition (HT)), we have that there exist the limits

ˆ̂
Ar = ˜lim

N→∞
Âr,N and

ˆ̂
Dr = ˜lim

N→∞
D̂r,N ,

and

D− lim
r→∞

ˆ̂
Ar = D− lim

r→∞
ˆ̂
Dr = 0

Proof of Theorem 2:

The proof falls naturally into two parts. We first justify the existence of
ˆ̂
Ar

and
ˆ̂
Dr:
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By (22), (23), (13) and (14), we have that

Âr,N(·)− D̂r,N(·) =

√
N

r

(
AN(r ·)−DN(r ·)

)
=

√
N

r
M−1 WN(r ·)

=
rH L1/2(r)

r
M−1 Ŵ r,N(·) .

Then, by Theorem 1, there exists

˜lim
N→∞

(
Âr,N − D̂r,N

)
=

rH L1/2(r)

r
M−1 ˆ̂

W r . (24)

Now, by using (12), we have that

√
N

r
AN(r t) =

√
N

r

(
EN(r t) + P T DN(r t)

)

=

√
N

r

(
EN(r t) + P T

(
DN(r t)− AN(r t)

)
+ P T AN(r t)

)
,

and therefore

√
N

r
AN(r t) = Q

√
N

r
EN(r t) + Q

√
N

r
P T

(
DN(r t)− AN(r t)

)
.

It follows, by applying (15), that

√
N

r
AN(r t) =Q

(
rH L1/2(r)

r
Êr,N(t) +

√
N αN t

µ̃1

µ̃1 + µ̃2

)
+

+Q

√
N

r
P T

(
DN(r t)− AN(r t)

)
,

and by combining this expression with (22), (23) and (3), we get

Âr,N =
rH L1/2(r)

r
Q Êr,N + QP T

(
D̂r,N − Âr,N

)
.

Therefore, we can conclude from (24) and Theorem 1 again, that there exists

ˆ̂
Ar = ˜lim

N→∞
Âr,N =

rH L1/2(r)

r
Q

(
ˆ̂
Er − P T M−1 ˆ̂

W r
)

, (25)

and combining (24) with (25) we deduce the existence of

ˆ̂
Dr = ˜lim

N→∞
D̂r,N =

rH L1/2(r)

r

(
Q

ˆ̂
Er −

(
IJ + Q P T

)
M−1 ˆ̂

W r
)

. (26)
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The second part of the proof consists in showing the existence of the limits

D− lim
r→∞

ˆ̂
Ar = D− lim

r→∞
ˆ̂
Dr

(
= 0

)
,

that is equivalent to prove that for any T > 0 and for any ε > 0,

lim
r→∞P

(
|| ˆ̂Ar(·)||T ≥ ε

)
= lim

r→∞P
(
|| ˆ̂Dr(·)||T ≥ ε

)
= 0 .

We will see that this is the case for
ˆ̂
Ar (the same conclusion can be drawn for

ˆ̂
Dr). Specifically, we will check that if we fix T > 0 and ε > 0, for any δ > 0

there exists r0 such that if r ≥ r0,

P
(
|| ˆ̂Ar(·)||T ≥ ε

)
≤ δ .

Indeed, we obtain from (25) that

|| ˆ̂Ar(·)||T ≤ rH L1/2(r)

r

(
|Q| || ˆ̂Er(·)||T + |QP T M−1| || ˆ̂W r(·)||T

)
,

and consequently

P
(
|| ˆ̂Ar(·)||T ≥ ε

)
≤ P

(
rH L1/2(r)

r
|Q| || ˆ̂Er(·)||T ≥ ε

2

)
+ (27)

+ P
(

rH L1/2(r)

r
|QP T M−1| || ˆ̂W r(·)||T ≥ ε

2

)

Since D− lim
r→∞

ˆ̂
Er = BH and process BH is continuous, as we have seen in

Theorem 1, by the continuous mapping theorem applied to || · ||T we have that

given δ > 0, there exist Kδ > 0 and r1 such that for any r ≥ r1 ,

P
(
|| ˆ̂Er(·)||T < Kδ

)
≥ 1− δ

2
.

Moreover, taking into account that

lim
r→∞

rH L1/2(r)

r
= lim

r→∞

(
L(r)

rβmin−1

)1/2

= 0 (28)
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(justified by the fact that βmin − 1 ∈ (0, 1) and L is a slowly varying function

at infinity), we can ensure that there exists r2 such that for any r ≥ r2 ,

rH L1/2(r)

r
<

1

Kδ

1

|Q|
ε

2
.

As a consequence, if r ≥ r1 ∨ r2 (= max(r1, r2)) ,

1− δ

2
≤ P

(
|| ˆ̂Er(·)||T < Kδ

)
≤ P

(
rH L1/2(r)

r
|Q| || ˆ̂Er(·)||T <

ε

2

)
,

that is,

∀r ≥ r1 ∨ r2 , P
(

rH L1/2(r)

r
|Q| || ˆ̂Er(·)||T ≥ ε

2

)
≤ δ

2
.

By applying again Theorem 1, we have that D− lim
r→∞

ˆ̂
W r = W , with W a

continuous process, and we can now proceed analogously to obtain that there

exists r3 such that

∀r ≥ r3 , P
(

rH L1/2(r)

r
|QP T M−1| || ˆ̂W r(·)||T ≥ ε

2

)
≤ δ

2
.

This finishes the proof, by (27), because we have shown that there exists r0

(the maximum of r1, r2 and r3) such that

∀r ≥ r0 , P
(
|| ˆ̂Ar(·)||T ≥ ε

)
≤ δ

2
+

δ

2
= δ . ¤
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premier orthant de Rn, Stochastics and Stochastics Reports 34 (1991) 149-167.

[2] P. Billingsley, Convergence of Probability Measures. Wiley, (1968).

[3] K. Debicki, M. Mandjes, Traffic with an fBm limit: Convergence of the

Stationary Workload process, Queueing Systems 46 (2004) 113-127.

23



[4] N. El Karoui, M. Chaleyat-Maurel, Un problème de réflexion et ses aplications
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